
Developer Based Pre-emptive Testing
PMI ISSIG 2006Professional Development Symposium

Dr. Richard Bechtold
Abridge Technology: www.abridge-tech.com

Abridge Technology
www.abridge-tech.com

Slide #: 2 rbechtold@abridge-tech.com

Presentation Overview
 Typical Test Motivation and Objectives
 Typical Test Strategies
 Controversial Test Strategies
 Typical Developer Attitudes about Testing
 Developer Based Pre-emptive Testing Approach
 Strategies for Developer Based Pre-emptive Testing
 Prioritizing Strategies
 Developer Based Pre-emptive Testing Advantages

Abridge Technology
www.abridge-tech.com

Slide #: 3 rbechtold@abridge-tech.com

Tester Psychology
Testing is the process ofcomparing the invisibleto the ambiguousso as to avoid the unthinkablehappening to the anonymous.– James Bach

Abridge Technology
www.abridge-tech.com

Slide #: 4 rbechtold@abridge-tech.com

Tester Psychology

Software Testers: Depraved minds, usefully employed.
– Rex Black

Abridge Technology
www.abridge-tech.com

Slide #: 5 rbechtold@abridge-tech.com

Typical Test Motivation

0% 20% 40% 60% 80% 100%
1

2

3

41994

2000
1998
1996

16 53 31

28 49 23

26 46 28

27 33 40

Standish Group; IT/IS Project Success Rates:

Successful Challenged Failed

Abridge Technology
www.abridge-tech.com

Slide #: 6 rbechtold@abridge-tech.com

Typical Test Objectives

Ordered, but Not
Delivered
Not Usable
Usable with Large
Changes
Usable with Small
Changes
Used as Delivered45%

30%19%
3%3% Requested Functionality of Software

(DoD Survey; SEI, CMU)

Abridge Technology
www.abridge-tech.com

Slide #: 7 rbechtold@abridge-tech.com

Typical Test Strategies
 Black Box vs. Gray Box vs. White Box
 Test Cases, Suites, Scripts, and Scenarios
 Use Case or Role-Based Scenarios
 Alpha, Beta, and Gamma Testing
 Piloting and Limited Releases

 Gold, Platinum, Titanium
 Manual, Automated, and Hybrid

Abridge Technology
www.abridge-tech.com

Slide #: 8 rbechtold@abridge-tech.com

Typical Test Strategies
 Focus on identifying (ISO 9126)

 Functionality (Accuracy, Security, etc.)
 Reliability (Recoverability, Fault Tolerance, etc.)
 Usability (Learnability, Operability, etc.)
 Efficiency (Time Behavior, Resource Behavior)
 Maintainability (Analyzability, Changeability, Testability, etc.)
 Portability (Installability, Replaceability, etc.)

Abridge Technology
www.abridge-tech.com

Slide #: 9 rbechtold@abridge-tech.com

Controversial Test Strategies
 Agile Testing: Write tests first; expect constant change and uncertainty
 Exploratory Testing: Simultaneous learning, test design, test execution; investigative
 Test Automation: Typically expensive; often highly reusable; strategic investment
 Developer Based Pre-emptive Testing:Aren’t these people too expensive to perform testing?

Abridge Technology
www.abridge-tech.com

Slide #: 10 rbechtold@abridge-tech.com

Typical Developer Attitudes about Testing
 “Testing is boring.”
 “An author cannot proof-read their own work, or test their own software.”
 “Testing is often where people start their careers, and I’ve moved beyond that.”
 “Testing should only be done by test specialists, and I only specialize in design/development.”
 “We’re too expensive to perform testing!”

Abridge Technology
www.abridge-tech.com

Slide #: 11 rbechtold@abridge-tech.com

Developer Based Pre-emptive Testing (DBPT) Approach
 With DBPT, test time is deliberately planned (e.g., 4 hours this Friday, covering the following strategies…)
 Developers do not immediately fix what they find; instead they simply log, fix later
 Testing can be deliberately designed (by the developers) to be more interesting

Abridge Technology
www.abridge-tech.com

Slide #: 12 rbechtold@abridge-tech.com

DBPT Approach
 As will be seen when discussing strategies, developers *are* the proper specialists for this type of testing
 With DBPT, developers continue to perform their usual sub-unit testing (typically, numerous times throughout each day)
 DBPT planning should be a minimum of 10% to 15% of DBPT time (i.e., if 4 hours/week set aside for DBPT, spend the first 30 minutes planning)

Abridge Technology
www.abridge-tech.com

Slide #: 13 rbechtold@abridge-tech.com

Strategies for DBPT
Underlying principle for each of the 8 strategies we are about to examine:
There are things that developers know intimately well about their software, and they can leverage that knowledge when planning and performing testing

Abridge Technology
www.abridge-tech.com

Slide #: 14 rbechtold@abridge-tech.com

Strategies for DBPT
 System Interaction Testing
 Software Architecture Testing
 Boolean Complexity Testing
 Algorithmic Performance Testing
 Exception Detection and Management Testing
 Harness and Diagnostic Log Testing
 High Index of Suspicion Testing
 Diagnostic Software Architectures

Abridge Technology
www.abridge-tech.com

Slide #: 15 rbechtold@abridge-tech.com

System Interaction Testing
 Depending upon your environment, a given system may need to interact with numerous other systems
 Often, systems test well in isolation, then fail during integration test
 Developers usually know exactly how, where, and when their code exchanges data or messages with other systems

Abridge Technology
www.abridge-tech.com

Slide #: 16 rbechtold@abridge-tech.com

System Interaction Testing
 Developers first test interactions with systems directly accessible from the developers’ environment
 Developers can also test system interactions in an alpha test environment
 Focus on integration and interaction with other systems or subsystems undergoing active upgrades or modernization

Abridge Technology
www.abridge-tech.com

Slide #: 17 rbechtold@abridge-tech.com

Software Architecture Testing
 In addition to horizontal interaction with neighboring systems, a developer’s code may integrate architecturally as a part of numerous virtual software layers

 Graphical user interface
 Data management
 User authentication, permission management, access and security control

Abridge Technology
www.abridge-tech.com

Slide #: 18 rbechtold@abridge-tech.com

Software Architecture Testing
 Developers specifically focus on testing code where

 The developer has used, or relied upon, the greatest amount of other in-house or third party software components
 The developer has made the greatest number of assumptions regarding the other software components’ detailed functions and characteristics

Abridge Technology
www.abridge-tech.com

Slide #: 19 rbechtold@abridge-tech.com

Boolean Complexity Testing
 Developers concentrate on testing the most deeply nested Boolean constructs they’ve created

 Nested binary logic: if, then, else, switch
 Nested looping constructs: while, for, repeat, do…until

 Test in a manner that ensures the most deeply nested logic is reached and executed

Abridge Technology
www.abridge-tech.com

Slide #: 20 rbechtold@abridge-tech.com

Boolean Complexity Testing
 Generally, even with only moderately complex logical structures, testing every possible path is infeasible
 This focus of this strategy is not path coverage (although that’s desirable, if achievable in a practical way) but is instead an investigation of the integrity of the logical structure itself

Abridge Technology
www.abridge-tech.com

Slide #: 21 rbechtold@abridge-tech.com

Algorithmic Performance Testing
 Similar to before, the focus is again on looping constructs
 However, now we are particularly interested in execution time *implications* resulting from nested looping constructs

 Logarithmic time
 Linear time
 Quadratic time
 Cubic time
 Exponential time

Abridge Technology
www.abridge-tech.com

Slide #: 22 rbechtold@abridge-tech.com

Algorithmic Performance Testing
 Generally, the dominant term determines the running time of an algorithm
 Consider: (10*N^3)+N^2+(40*N)+80
 For the value of N = 1000

 Function returns: 10,001,040,080
 Of that, 10,000,000,000 is due to (10*N^3)
 The remaining 1,040,080 is less than 0.01 percent of the original total value

Abridge Technology
www.abridge-tech.com

Slide #: 23 rbechtold@abridge-tech.com

Algorithmic Performance Testing

Linear

N log N

QuadraticCubic

Input Size (N)

Run
nin

g T
ime

Abridge Technology
www.abridge-tech.com

Slide #: 24 rbechtold@abridge-tech.com

Algorithmic Performance Testing

Linear

N log NQu
adr

ati
c

Cu
bic

Input Size (1000 N)

Run
nin

g T
ime

Abridge Technology
www.abridge-tech.com

Slide #: 25 rbechtold@abridge-tech.com

Algorithmic Performance Testing
n = 10 20 30 40 50 60
n .00001 second .00002 second .00003 second .00004 second .00005 second .00006 second
n^2 .0001 second .0004 second .0009 second .0016 second .0025 second .0036 second
n^3 .001 second .008 second .027 second .064 second .125 second .216 second
n^5 .1 second 3.2 seconds 24.3 seconds 1.7 minutes 5.2 minutes 13.0 minutes
2^n .001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 century
3^n .059 second 58 minutes 6.5 years 3855 century 2x10^8 century 1.3x10^13 cent.

Abridge Technology
www.abridge-tech.com

Slide #: 26 rbechtold@abridge-tech.com

Exception Detection and Management Testing
 Modern programming languages usually offer advanced features for exception detection and management

 Java: throw, catch, final
 Also, carefully examine the role of non-standard early terminations

 Java: break, continue, break outermost

Abridge Technology
www.abridge-tech.com

Slide #: 27 rbechtold@abridge-tech.com

Exception Detectionand Management Handling
 In some cases, it *is* reasonable to try for full coverage of all exception trapping and escalation logic (at least in a particular code segment)
 Rethink and consider, what are some potential “worst case” situations (e.g., disappearing files, etc.) and how will the software behave?

Abridge Technology
www.abridge-tech.com

Slide #: 28 rbechtold@abridge-tech.com

Harness and Diagnostic Log Testing
 In this strategy, developers write additional separate code to help with their testing process

 Add minor logic to interior algorithms so that selected inputs, temporary values, and outputs are written to one or more diagnostic files
 Write a small utility that examines the diagnostic files for correctness

Abridge Technology
www.abridge-tech.com

Slide #: 29 rbechtold@abridge-tech.com

Harness and Diagnostic Log Testing
 Similarly, small utility algorithms can be written that produce huge sets of simulated input data
 Other utilities can capture output data from standard interfaces, and check correctness
 Although expensive at first, harness and diagnostic utilities are normally highly reusable, and excellent for regression testing

Abridge Technology
www.abridge-tech.com

Slide #: 30 rbechtold@abridge-tech.com

High Index of Suspicion Testing
 As a general rule, developers are well aware of where the logic is that scares them the most, for example

 By type of logic (e.g., pointer manipulation)
 By type of function (e.g., any of the routines performing Federal, State, and County tax calculations)
 By when created (any code originally developed for version 3.2 or earlier)

Abridge Technology
www.abridge-tech.com

Slide #: 31 rbechtold@abridge-tech.com

High Index of Suspicion Testing
 When—not if—the help desk starts receiving calls about defects, what are the most likely locations in your source?
 Also, what are the most likely types of potential problems?

 Logical
 Mathematical
 File I/O
 Error handling
 Data corruption

Abridge Technology
www.abridge-tech.com

Slide #: 32 rbechtold@abridge-tech.com

Diagnostic Software Architectures
 Although almost no one does it, systems can be *designed* to support diagnostics
 Premise: you want to reduce the time of

 Detections
 Corrections
 Recovery

 Your systems/software should *never*keep secrets from you

Abridge Technology
www.abridge-tech.com

Slide #: 33 rbechtold@abridge-tech.com

Diagnostic Software Architectures
 As with automobiles, the ideal is to design your software so that a variety of very fine-grained detection capabilities exist
 Diagnostic capabilities can be activated and deactivated by type, depth of investigation, location, etc. (or any combination)
 Performance penalties can be temporarily acceptable
 Typically, fixing a defect is relatively fast and easy—the vast majority of *rework* time and cost actually occur trying to find the defect location

Abridge Technology
www.abridge-tech.com

Slide #: 34 rbechtold@abridge-tech.com

Prioritizing Strategies
 Generally, allow developers to decide how much time to set aside for

 DBPT planning
 DBPT performance

 Allow the developer to select the primary strategy, or combination of strategies, he or she intends to use
 Strategies should generally reflect the developer’s strengths and insights (and unstated concerns)

Abridge Technology
www.abridge-tech.com

Slide #: 35 rbechtold@abridge-tech.com

Prioritizing Strategies
 Ask for *very simple* record keeping

 What was found
 Where was it found
 Time spent detecting (relative to plan)

 Use the resulting data, and data from the independent test group, to recommend adjustments to future DBPT planning and performance

Abridge Technology
www.abridge-tech.com

Slide #: 36 rbechtold@abridge-tech.com

DBPT Advantages
 DBPT generally avoids duplicating testing performed by the independent test group (e.g., role-based testing)
 Facilitates discovery of defects that might otherwise be very hard to find prior to release
 Augments, but does not replace, standard day to day sub-unit testing

Abridge Technology
www.abridge-tech.com

Slide #: 37 rbechtold@abridge-tech.com

DBPT Advantages
 Defects are discovered and fixed when the overall code is clearest in the developer’s mind (not weeks after testing, or months after release)
 Can potentially result in substantially reduced time and cost in

 Development
 Rework
 Testing
 Customer support
 Defect recovery actions

Abridge Technology
www.abridge-tech.com

Slide #: 38 rbechtold@abridge-tech.com

Summary and Conclusions
 In principle, no testing should be necessary—developers should write perfect software
 In practice, an independent test group is often essential for achieving pre-release quality objectives
 However, test time, and test budgets, are often used as buffers for project over-runs

Abridge Technology
www.abridge-tech.com

Slide #: 39 rbechtold@abridge-tech.com

Summary and Conclusions
 Engaging developers in *some* level of systematic and planned investigations into anomalous software behavior can save significant time and costs
 As with anything, the more developers practice DBPT, the more adept they’ll become at the various strategies
 Plot trends in defect discovery to confirm that DBPT is successful in *your* context

Abridge Technology
www.abridge-tech.com

Slide #: 40 rbechtold@abridge-tech.com

Contact Information
Dr. Richard Bechtold

President; Senior Consultant
Abridge Technology; Ashburn VA

703.729.6085
rbechtold@abridge-tech.com

rbechtold@rbechtold.com
www.abridge-tech.com

Abridge Technology
www.abridge-tech.com

Slide #: 41 rbechtold@abridge-tech.com

Biographical Highlights
Dr. Bechtold is a senior consultant for Abridge Technology, a Virginia-based company he founded in 1996. Abridge Technology is an SEI Partner and is authorized to provide licensed training and appraisal services. Dr. Bechtold provides consulting, training, and support services in the areas of project management, process improvement, process definition, measurement, and risk management. Dr. Bechtold has assisted government and industry with implementing the Software CMM since 1992, the Acquisition CMM since 1996, and the CMMI since 2000. Dr. Bechtold's expertise spans organizations of all types and sizes, from multi-billion dollar companies and agencies, to companies with less than 20 personnel.

